什么是复数集 复数集是什么
- 2023-05-03 11:01:45
什么是复数集 复数集是什么,
复数集就是所有实数和虚数组成的集合,符号为C。形如z=a+bi(a,b均为实数)的数称为复数,其中i为虚数单位,且i^2=i*i=-1(a,b是任意实数)。复数由意大利米兰学者卡当在十六世纪首次引入,后来这个概念逐渐为数学家所接受。
数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。
定义:形如z=a+bi的数称为复数,其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)
我们将复数z=a+bi中的实数a称为虚数z的实部(real part)记作Rez=a
实数b称为虚数z的虚部(imaginary part)记作 Imz=b。
易知:当b=0时,z=a,这时复数成为实数。
当a=0且b≠0时 ,z=bi,我们就将其称为纯虚数。
定义: 对于复数z=a+bi,称复数z‘=a-bi为z的共轭复数。
定义:将复数的实部与虚部的平方和的正的平方根的值称为该复数的模,记作∣z∣,即对于复数z=a+bi,它的模∣z∣=√(a^2+b^2)。
复数的集合用C表示,显然,R是C的真子集。
复数集是无序集,不能建立大小顺序。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到583666585@qq.com,我们会及时做删除处理。